
Answers exam Quantum Physics 2, 18 June 2014

Exercise 1

(a) Explain what are the properties of operators that are constants of motion and how
they are used to describe stationary states.

An operator Q is a constant of motion if it satisfies [H,Q] = 0 and ∂Q/∂t = 0,
such that d〈Q〉/dt = 0. The Hamiltonian and constants of motion can be
diagonalized simultaneously. As a consequence, stationary states can be spec-
ified by the eigenvalues of constants of motion, the so-called “good” quantum
numbers, in a time-independent way.

(b) Use the table below to write down the Clebsch-Gordan decomposition of the state
|l, s; j,mj〉 = |1, 1

2
; 1
2
, 1
2
〉 and verify that acting with J+ on the decomposition gives zero.

For the state |l, s; j,mj〉 = |1, 1
2
; 1
2
, 1
2
〉, one reads off in the 1× 1/2 part of the

table for the Clebsch-Gordan coefficients in front of the states |l,ml〉|s,ms〉:
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1

2
,
1

2
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√
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〉



Acting with J+ = L+ + S+ on the decomposition yields for both terms a
constant times the state |1, 1〉|1

2
, 1
2
〉, which cancel when added:

J+|1,
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;
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2
,
1

2
〉 = (L+ + S+)
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|1, 1〉|1

2
,
1

2
〉 = 0

(c) In the calculation of the strong field Zeeman splitting, one can take into account the
relativistic spin-orbit coupling effect as a perturbation. The first-order perturbative cor-
rection then involves the calculation of the matrix element 〈l, s,ml,ms|~L · ~S |l, s,ml,ms〉.
Evaluate this matrix element and explain why one only has to consider such diagonal
matrix elements, despite the degeneracy in some of the quantum numbers for the unper-
turbed system.

One way of arriving at the result is by writing

~L · ~S =
1

2
(L+S− + L−S+) + LzSz,

where only the last term contributes: 〈l, s,ml,ms|~L · ~S |l, s,ml,ms〉 =
〈l, s,ml,ms|LzSz|l, s,ml,ms〉 = ~2mlms. Another way is given on page 280 of
the book.

Off-diagonal elements in degenerate perturbation theory need to be consid-
ered, unless one can find operators that commute with both the unperturbed
Hamiltonian and the perturbation, and having distinct eigenvalues (cf. the op-
erator A on page 259/260 of the book). In this way one knows the eigenstates
on which the perturbation will be diagonal. In the case of the strong magnetic
field the C.S.C.O. of the unperturbed Hamiltonian is formed by ~L 2, Lz, ~S

2, Sz.
The operators ~L 2 and ~S 2 also commute with ~L · ~S , hence one only needs to
consider matrix elements diagonal in l and s. The operators Lz and Sz do
not commute with the spin-orbit term, so they cannot play the role of A, but
there is no need for that. The unperturbed states are nondegenerate in ml and
ms, due to the Zeeman term, see Eq. (6.79), except when ml + 2ms = 0. For
instance, for n = 2 the states with ml = 1,ms = −1/2 and ml = −1,ms = 1/2
are degenerate. However, such two-fold degenerate states with nonzero ml and
−ml cannot be coupled by L±, since ∆ml ≡ ml − (−ml) ≥ 2 for ml ≥ 1.
Considering exclusively diagonal matrix elements is therefore justified. Note
that this issue has nothing to do with the perturbation lifting degeneracy.

(d) Consider a Hamiltonian H that commutes with the parity or reflection operator P :
x → −x. Show that 〈ψa|H|ψb〉 = 0 whenever ψa is an even function of x and ψb is an
odd function. Explain how this result helps to simplify degenerate perturbation theory
calculations.

[H,P ] = 0 implies 〈ψa|[H,P ]|ψb〉 = 0 which in turn implies 〈Pψa|H|ψb〉 =
〈ψa|H|Pψb〉, hence for even ψa and odd ψb: 〈ψa|H|ψb〉 = −〈ψa|H|ψb〉.
Therefore, 〈ψa|H|ψb〉 = 0.



In degenerate perturbation theory off-diagonal matrix elements 〈ψi|H ′|ψj〉
need to be considered for degenerate states ψi and ψj. Symmetry arguments
can be used to identify the “good” linear combinations of ψi and ψj for which
this matrix is automatically diagonal, like for the even and odd states if H
commutes with the parity operator. P is another example of an operator A
on page 259/260 of the book.

Exercise 2

Consider the one-dimensional harmonic oscillator as unperturbed system and introduce
the perturbation

H ′(x) = c
√
b exp(−bx2),

where b and c are positive constants.

(a) Calculate within perturbation theory the first-order correction to the ground state
energy and determine for which values of c the result is valid when b� mω/~.

The ground state wave function of the one-dimensional harmonic oscillator is
given by

ψ0
0(x) =

(mω
π~

) 1
4

exp
(
−mω

2~
x2
)
.

The first-order correction to the ground state energy is given by:

E1
0 = c

√
b

∫ ∞
−∞

dxe−bx
2

(ψ0
0(x))2 =

c
√
b√

1 + ~b/(mω)
.

Perturbation theory is valid if this correction is smaller than the unperturbed
ground state energy ~ω/2. In the limit b � mω/~ the correction becomes
c
√
mω/~, hence:

c� ~3/2

2

√
ω

m
.

Consider next the perturbation

H ′(x) = c x
√
b exp(−bx2),

where b and c are positive constants.

(b) Show that in this case the first-order perturbative correction vanishes.

The first-order correction to the ground state energy is now given by:

E1
0 = c

√
b

∫ ∞
−∞

dxxe−bx
2

(ψ0
0(x))2 = 0,

due to symmetric integration of an odd integrand. In fact, E1
n = 0 for all n.

(c) Show that the second-order perturbative correction to the ground state energy is
negative.



The second-order correction to the ground state energy is given by:

E2
0 =

∑
m6=0

|〈ψ0
m|H ′|ψ0

0〉|2

E0
0 − E0

m

.

The numerator is always positive and the denominator always negative (E0
m >

E0
0 > 0 for m > 0), so E2

0 is negative.

(d) Demonstrate using the variational principle that adding this perturbation H ′ can only
decrease the energy of the ground state.

For all trial wave functions ψT it holds that

E[ψT ] ≡ 〈ψT |H0 +H ′|ψT 〉
〈ψT |ψT 〉

≥ Eg.s.,

where Eg.s. denotes the true ground state energy. For ψT = ψ0
0 one has E[ψ0

0] =
〈ψ0

0|H0|ψ0
0〉 = E0, hence Eg.s. ≤ E0, where the equality only holds in the

unperturbed case, i.e. when c = 0 such that H ′ = 0.

(e) Draw a picture of the potential including the perturbation H ′ and write down a trial
wave function that might be expected to give a better upper bound on the ground state
energy than the unperturbed ground state energy (motivate your choice).

As can be seen from the above illustration, the potential will be partly below
zero for some negative x value, call it xmin. A Gaussian centered around
xmin may be expected to give a lower bound for instance, because it has larger
probability at xmin. Note that any purely even or purely odd trial wave function
will yield zero expectation value of H ′ and will not lower the energy.

Exercise 3

Consider the Hamiltonian H = H0 + H ′(t), where H ′ is a time-dependent perturbation

that is nonzero for t ≥ 0. Let ψ
(0)
n be the orthonormal set of eigenstates of H0 with

energies E
(0)
n , i.e. H0 ψ

(0)
n = E

(0)
n ψ

(0)
n .

(a) Show that with the following expansion on the states ψ
(0)
n

ψ(t) =
∑
n

cn(t)ψ(0)
n e−i E

(0)
n t/~,



the coefficients satisfy

ċm(t) =
1

i~
∑
n

cn(t) ei (E
(0)
m −E

(0)
n )t/~H ′mn,

where H ′mn = 〈ψ(0)
m |H ′|ψ(0)

n 〉.

Plugging ψ(t) into the Schrödinger equation i~dψ(t)/dt = (H0 + H ′(t))ψ(t),

taking the inner product with the state ψ
(0)
m and exploiting orthonormality of

the states ψ
(0)
n yields the answer, like on p. 342 of the book, but now for an

arbitrary number of states. Note that the sum over n includes m, since in
general (H ′)mm 6= 0.

(b) Consider the case where H ′(t) = V (r)θ(t) for a two-level system consisting of states
ψ1 and ψ2, such that 〈ψi|V (r)|ψj〉 6= 0 for i 6= j. Derive, to first nontrivial order in time-
dependent perturbation theory, what is the probability to be in state ψ2 as a function of
time if the system is in state ψ1 for t < 0.

In first order perturbation theory and for c
(0)
n (t) = δn1:

ċ
(1)
2 =

1

i~

2∑
n=1

H ′2n c
(0)
n (t) ei (E

(0)
2 −E

(0)
n )t/~ =

1

i~
H ′21 e

i (E
(0)
2 −E

(0)
1 )t/~.

This yields:

c
(1)
2 (t) =

1

i~
V21

∫ t

0

dt′ei ω21t′ =
−2iV21
~ω21

ei ω21t/2 sin

(
ω21t

2

)
.

Hence, the probability to be in state ψ2 for t ≥ 0 is

|c(1)2 (t)|2 =
4|V21|2

~2ω2
21

sin2

(
ω21t

2

)
.


